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Abstract 

Quantitative phase imaging (QPI) via Digital Holographic microscopy (DHM) has been 

widely applied in material and biological applications. The performance of DHM 

technologies relies heavily on computational reconstruction methods to provide accurate 

phase measurements. Among the optical configuration of the imaging system in DHM, 

imaging systems operating in a non-telecentric regime are the most common ones. 

Nonetheless, the spherical wavefront introduced by the non-telecentric DHM system must be 

compensated to provide undistorted phase measurements. The proposed reconstruction 

approach is based on previous work from Kemper’s group. Here, we have reformulated the 

problem, reducing the number of required parameters needed for reconstructing phase images 

to the sensor pixel size and source wavelength. The developed computational algorithm can 

be divided into six main steps. In the first step, the selection of the +1-diffraction order in the 

hologram spectrum. The interference angle is obtained from the selected +1 order. Secondly, 

the curvature of the spherical wavefront distorting the sample's phase map is estimated by 

analyzing the size of the selected +1 order in the hologram's spectrum. The third and fourth 

steps are the spatial filtering of the +1 order and the compensation of the interference angle. 

The next step involves the estimation of the center of the spherical wavefront. An optional 

final optimization step has been included to fine-tune the estimated parameters and provide 

fully compensated phase images. Because the proper implementation of a framework is 

critical to achieve successful results, we have explicitly described the steps, including 

functions and toolboxes, required for reconstructing phase images without distortions. As a 

result, we have provided open-access codes and a user interface tool with minimum user input 

to reconstruct holograms recorded in a non-telecentric DHM system. 

Keywords: Non-telecentric; Digital Holographic Microscopy; Image Reconstruction; 

Automation; Image Processing. 

Introduction 
Digital Holographic Microscopy (DHM) is a quantitative phase imaging modality that 

relies on optical interferometry to record holograms [1–5], and numerical reconstruction 

procedures to retrieve amplitude and phase information from micrometric specimens. The 

phase information encodes the lateral and axial information of the sample, enabling the 

characterization of both its functional and morphological information. Therefore, DHM has 

proven to be a powerful metrological tool when non-invasive imaging is desired across 

various fields and applications [1–5]. In biology, it has been applied to study cells and tissues, 
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offering a powerful tool for developmental biology [6], stem cell research [7], and cancer 

diagnosis [8]. DHM has also found applications in material science, where it has been used to 

study the microstructure and mechanical properties of materials such as polymers [9], 

ceramics [10], and metals [11]. Additionally, DHM has been used for particle analysis in 

liquids and suspensions, allowing for the determination of particle size, shape, and 

concentration [12]. DHM has also been applied in microfluidics to study fluid flow and 

behavior at the microscale, including lab-on-a-chip devices [13]. DHM has also found 

applications in industrial inspection, where it has been used for non-destructive testing and 

quality control in industries such as electronics [14] and pharmaceuticals [15]. These 

applications demonstrate the versatility and potential of DHM as a tool for scientific and 

industrial applications. 

Wavefront aberrations can significantly distort the accuracy of the phase measurements 

provided by DHM during the hologram recording [16]. The most common distortion is phase 

aberration due to the tilt angle between the interfering object and reference wavefronts 

inherent in all off-axis DHM systems. This first-order phase aberration is observable on the 

recorded holograms as interferential fringes. Correction of this linear phase aberration is 

known as the phase compensation stage in DHM reconstruction algorithms, in which the 

shifted object spectrum (e.g., the +1-diffraction term) is centered on the frequency origin. 

Over the last decade, several research groups have proposed automated compensation 

methods [17,18]. These methods reconstruct phase images by minimizing the number of 

phase wrappings in the final reconstructed phase map. However, a significant limitation of 

these computational approaches is that they are designed for only telecentric-based DHM 

imaging systems, assuming that the center of the +1-diffraction term is a maximum value.  

Although telecentric-based DHM systems have been validated as intrinsically linear shift-

invariant imaging systems [19], the DHM community has not fully adopted this optical 

configuration. There are four potential reasons hampering its adoption. The first is related to 

using non-infinity corrected microscope objective lenses, which generate a diverging 

spherical wavefront in the image space. The second is the need to create compact DHM 

imaging systems by minimizing the distance between the infinity-corrected microscope 

objective lens and the tube lens. The third reason is related to the integration of DHM 

imaging modality with commercial microscopic systems to extend the reach of the DHM 

technique to a broader community and enable dual-mode fluorescent imaging with QPI [20]. 

The final reason is the difficulty of ensuring the distance between these lenses to achieve the 

required afocal configuration. Regardless of the reason, the direct phase reconstruction of 

holograms captured using non-telecentric DHM systems present a spherical phase distortion, 

which arises when a converging or diverging spherical wavefront is found on the image space 

of the DHM system.  

Spherical wavefront distortions must be compensated to provide accurate phase 

measurements across the imaged field of view, converting the non-telecentric DHM system 

into a linear shift-invariant phase tool. These distortions can arise from several different 

sources and can be compensated via physical or numerical methods. Among the physical 

methods, one can record an additional hologram without a sample (e.g., blank hologram) to 

reconstruct the spherical wavefront experimentally and subtract it from the distorted phase 

image of the sample under research [21]. The major limitation of this approach is that one 

should record the blank hologram at least once for each experiment recording. Single-shot 

physical methods have been proposed to avoid this limitation. They involve inserting an 

equivalent non-telecentric imaging system in the reference arm [22] or illuminating the 

sample with a converging spherical wave whose focus is conjugated with the front focus of 

the tube lens for full compensation [23].  

Despite these physical methods, the spherical wavefront introduced using non-telecentric 

DHM imaging systems can be compensated computationally. Reported computational 

approaches have proposed the estimation of the spherical wavefront using Zernike 



polynomial fitting (ZPF) [24–27], least square surface fitting [27, 28], or principal component 

analysis (PCA) [30, 31]. The final reconstructed phase image is obtained by multiplying the 

reconstructed phase image with spherical distortion with the conjugated distribution of the 

estimated spherical phase mask. The performance of these computational approaches depends 

significantly on the ability to determine the parameters of the spherical wavefront (e.g., the x- 

and y- coordinates of its center, and the radius of curvature) with the highest precision. For 

example, the success of fitting-based implementations [24–29] requires a large area without 

sample information (e.g., sample-free hologram). Several research groups have proposed 

using learning-based models to compensate for low and high-order aberrations [32–35], 

including the spherical wavefront introduced by non-telecentric imaging systems. The method 

proposed by Nguyen et al. utilizes a Convolutional Neural Network with a U-Net architecture 

to automatically segment sample information which is then used with ZPF to compensate for 

remaining aberrations [33]. Similarly, Ma et al. propose a two-stage Generative Adversarial 

Network (GAN) for background segmentation and then use in-painting to create a reference 

hologram to eliminate background noise from the object information [34]. Although the 

benefit of these methods is that they can handle both low and high-order aberrations present 

in the background, their use is limited to sparse samples. Conversely, the resnet-50 model 

trained by Xin et al. accomplished the task of phase aberration compensation by predicting 

the coefficients of a standard 2D polynomial which are used to create the conjugated spherical 

phase map [35]. However, the performance of these learning-based models depends on the 

training dataset's amount and quality. All the thousands of inputs for the training procedure of 

the above-mentioned works require paired ground truths, which often must be further 

supplemented by data augmentation techniques to provide a sufficient dataset.  

In 2017, Min et al. proposed a single-shot computational approach to estimate the 

spherical wavefront of non-telecentric DHM systems based on a spectral analysis of the 

recorded holograms [36]. This work extends Min’s approach by further reducing the number 

of required parameters needed for reconstructing phase images. The input parameters of our 

computational method are the sensor's pixel size and the wavelength of the light source. 

Because the proper implementation of a framework is critical to achieve successful results, 

the accuracy of the algorithm proposed by Min et al. is highly dependent on the methods used 

for the thresholding and segmentation of the ±1 diffraction terms and their compact support 

size. A preliminary computational function to reconstruct non-telecentric holograms was 

recently implemented in the pyDHM library under the CNT function [37]. This function 

provides reconstructed phase images without or with minimum phase distortions after finding 

the best curvature of the spherical wavefront along the two lateral spatial coordinates using 

two nested for loops, leading to a high processing time. However, in this work, we have 

explicitly described the steps, including functions and toolboxes, required for reconstructing 

phase images without distortions. In contrast to Min’s method, we have included iterative 

minimization algorithms [18] as an optional final optimization step to fine-tune the estimated 

parameters of the spherical wavefront and provide fully compensated phase images. The 

implementation for each step of the proposed method has been thoughtfully investigated, 

aiming to develop a generalized computational tool in DHM. Our approach is independent of 

the sample's size (i.e., not requiring sample-free field of view within the hologram). 

Additionally, we validate the performance of this approach for several microscopic samples, 

including biological and non-biological samples, distorted with a spherical wavefront with 

different curvature. The proposed method has been implemented in MATLAB 2021a and 

Python 3.7.1 and is publicly available via GitHub [38], offering an open-source 

reconstruction tool (i.e., codes and GUI) for the DHM community. 

 



Off-axis Digital Holographic Microscopy in non-

telecentric mode 
At their core, DHM systems are simply optical interferometers used to image unstained 

(e.g., transparent) microscopic samples [1–5]. Fig 1 shows one of many traditional DHM 

systems, which follows a Mach-Zehnder interferometer configuration. A coherent 

illumination source (i.e., laser) emits a divergent spherical beam whose focus is conjugated 

with the front focus of a converging lens (CL), generating a plane wave after the CL lens. A 

beam splitter (BS1) is then used to split the plane beam into two beams, producing the 

reference (R) and object (O) wavefronts. The object beam is then reflected by a mirror (M1) 

to illuminate an object placed at the front focal plane of the microscope objective (MO) lens. 

The wavefield scattered by the sample is imaged by an imaging system composed of an 

infinity-corrected MO lens and a tube lens (TL). Since the object is placed at the front focal 

plane of the MO lens, the image of the sample is always located at the back focal plane of the 

TL, regardless of the optical configuration between the MO and TL lenses (z distance in Fig 

1). The reference plane wave is then reflected directly onto the sensor by a second mirror 

(M2). The second beam splitter (BS2) combines both the object and reference wavefronts 

coherently, enabling the recording of their interference pattern (e.g., hologram) onto the 

sensor of a CCD/CMOS camera located at the back focal plane of the TL (i.e., the image 

plane of the DHM system). These holograms encode both amplitude and phase information of 

the complex amplitude distribution scattered by the microscopic sample.  

 
Fig 1. Traditional Mach-Zehnder DHM system with an imaging system composed of an infinity-corrected 

microscope objective (MO) lens and a tube lens (TL) operating in non-telecentric regime (z ≠ fTL). The sensor 

records the interference pattern between the object and reference wavefronts. CL, converging lens; BS1 and BS2, 
beam splitters; M1 and M2, mirrors; O, object wave; R, reference wave. 

 

The hologram distribution can be expressed as,  

 ( )
2 2 2 * *, ,= + = + +IP IP IP IPh x y u r u r u r +u r  (1) 

where uIP(x,y) is the complex amplitude distribution scattered by the sample at the image 

plane of the TL, and r(x,y) is the complex amplitude distribution of the reference wave. 

Typically, the reference wave is a uniform plane wave with an intensity equal to one, i.e., 
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where λ is the wavelength of the coherent light source, and the angle θ = (θx, θy) is the angle 

between the wavevectors of the object and reference beams. Assuming an arbitrary object 

complex amplitude distribution, 0 0( , ) ( , ) exp[i ( , )]=o x y a x y x y , the complex amplitude 

distribution scattered by it and imaged by the imaging system (uIP) is equal to 
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where   is the 2D convolution operator, ML is the lateral magnification between the object 

and image plane, k = 2π/λ is the wavenumber, L0 is the optical distance between the object 

and image plane, C is the curvature of the spherical aberration defined by 
2 / ( )= −TL TLC f f z  

being fTL the focal length of the TL and z the distance between the aperture stop of the MO 

lens and the TL. If the front focal plane of the TL lens coincides with the plane of the aperture 

stop (e.g., fTL = z), the spherical wavefront in the image space of the DHM system becomes a 

plane wavefront. Therefore, the spherical phase term in Eq. (3) is removed. Overall, the 

complex wavefield produced by the imaging system is the 2D convolution between a 

magnified replica of the object distribution and a scaled replica of the Fourier transform of the 

aperture stop of the MO lens, P(u,v) = FT[p(x,y)]. For the sake of simplicity, in this 

discussion, we have assumed that the size of the aperture stop is infinite, and therefore we can 

omit the convolution operation, thus ( ) ( )2 2, exp i ,
2

  
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To acquire useful information about the sample, the object information encoded in the 

hologram [Eq. (1)], must be isolated from the object and reference intensities and the virtual 

image, 
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where t(x,y) represents the argument of the exponential in Eq. (2), 

2
( , ) ( sin sin )
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= +t x y x y , and s(x,y) is the argument of the spherical phase factor of the 

object wavefield in Eq. (3), 
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C
 . The amplitude distribution scattered by 

the sample can be reconstructed by estimating the absolute value of Eq. (4), 0
ˆ ( , ) | |= Fa x y h . 

On the other hand, estimating the object phase from Eq. (4) requires the compensation of the 

interference angle and the spherical wavefront,  0
ˆ ( , ) angle = − −Fx y h t s .  

The interfering angle, θ = (θx, θy), and the curvature of the spherical wavefront (C) can be 

measured experimentally by analyzing the Fourier transform (FT) of the hologram (e.g., the 

hologram spectrum). The spectrum of the filtered object is  
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where (u,v) are the lateral spatial frequencies, O(·) is the Fourier transform of the complex 

amplitude distribution. Some irrelevant constant factors have been omitted in Eq. (5). The 

center of the object spectrum is centered at the spatial frequencies 
sinsin

, yx


 
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Assuming that the hologram is recorded onto the surface of a discrete sensor with X×Y square 

pixels of Δxy size, the interference angle can be calculated as [18] 
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where (u0, v0) are the lateral pixel position of the center of the DC term, being equal to u0 = 

(X/2)+1 and v0 = (Y/2+1), and (Q, P) are the center pixel positions of the +1 term in the 

Fourier domain, HF(u,v).  

In Eq. (5), the spectrum of the object is convolved by a spherical wavefront in the Fourier 

domain. This spherical wavefront makes the compact support of the +1-term change from a 

circle in telecentric-based DHM systems to a rectangle in non-telecentric DHM systems [39]. 

The size of the +1 term (e.g., M and N along the horizontal and vertical direction, see Fig 2) 

changes linearly with the inverse of the curvature of the spherical wavefront (1/C) [39]. In 

fact, Sanchez-Ortiga et al. demonstrated that the lateral size of the +1 term is equal to 
2(   ( )) = xyM X C  along the x coordinate and 

2(   ( )) = xyN Y C  along the y coordinate. 

Therefore, the size of the compact support of this term in each direction, or simply, the 

curvature in the spatial domain, can be estimated as 
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Equations (8) and (9) show that the curvature of the spherical wavefronts in Eqs. (3) and 

(5) may differ between the two lateral coordinates if the hologram is not square (X ≠ Y).  



 
Fig 2. Flowchart outlining the spectral analysis reconstruction algorithm for quantitative phase imaging 

using non-telecentric DHM systems. 

Reconstruction of quantitative phase images in 

non-telecentric DHM systems 
This section describes how the proposed reconstruction algorithm for quantitative phase 

imaging using non-telecentric DHM systems has been implemented, Fig 2. As previously 

mentioned, off-axis DMH systems operating in non-telecentric mode are popular even though 

they result in holograms with spherical phase distortions. Due to the popularity of such 

systems, many variations of these phase distortions are possible based on the experimental 

configuration of the DHM systems. Our experimental holograms have different experimental 

conditions, including MO lenses with different lateral magnification (ML) and numerical 

aperture (i.e., spatial resolution). In particular, we used two infinity-corrected Nikon 

microscope objective lenses: a 20×/0.5 NA and 40×/0.75 NA microscope objective lens. 

Also, the experimental holograms differ in the interference angle between the object and 

reference beams. The distance between the aperture stop of the MO lens and the TL also 

changes, providing spherical wavefronts with different curvatures. In all the experimental 



holograms, the wavelength of the illumination laser was λ = 532 nm, and the camera used to 

record the holograms had a pixel size of Δxy = 5.86 µm. We have used experimental 

holograms of the Benchmark Technologies Quantitative Phase Target (QPT™) and a 

smearing sample of human red blood cells from Carolina Biological Supply Company (item # 

C25222) to validate the proposed methodology. The steps of the proposed algorithm (Fig 2) 

are based on Min's approach [37]. The implementation has been performed in MATLAB 

using a 2021a academic license and its image-processing toolbox, and in Python 3.7 using the 

libraries scikit-image and scipy. A guided user-interface (GUI) has also been developed in 

both software platforms for ease of use. After loading the hologram, the fast 2D Fourier 

transform (FFT) is computed. It is important to reorganize the hologram spectrum to shift the 

zero-frequency component to the center of the hologram spectrum using the widely known 

FFT shifting function. The next step is related to the identification of the +1 term [Eq. (5)]. 

Automatic approaches for image segmentation were considered to identify the +1 term. 

However, the accuracy of these methods was highly variable, often producing under- or over-

estimates of the +1 term. Therefore, for this step, we rely on the user to identify the desired 

crop rectangle in the spectral domain of the hologram. This rectangle will define the initial 

values of the +1 term’s position (P and Q) and shape (M and N). The user ought to slightly 

overestimate the rectangles’ size, to ensure higher frequency information is not lost, which 

can later be fine-tuned by using the sliders (shown in Fig 3). After the hologram's ±1 term has 

been identified, the interference angle of the DHM system [Eqs. (6) and (7)] can be defined 

by the position of the +1 term’s centroid. 

 
Fig 3. Identification of the ±1 term from the hologram's spectrum using the proposed MATLAB GUI. The 

curvature of the spherical phase factor can be estimated from the height (M) and width (N) of the ±1 terms, identified 
by the user, using Eqs. (8) and (9). The interference angle can be estimated using the distance between the center of 

the ±1 term and the spectrum's origin (via P and Q) using Eqs. (6) and (7). 

 

The interference angle, θ = (θx, θy), is given by the distance from the +1 term's centroid to 

the spectrum's center, see Eqs. (6) and (7). The next step is related to the compensation of the 



interference angle between the reference and object waves. For this step, we must multiply 

the inverse Fourier transform of the filtered hologram's spectrum [hF, Eq. (4)] by a discrete 

digital reference wave rD(m,n)  
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where (m,n) are the discrete lateral coordinates of the sensor, X and Y are the number of pixels 

of the sensor in each direction, and Δxy are the lateral dimension of its square pixels. The 

computation of the digital reference wave in Eq. (10) requires the interference angle, which is 

given by Eqs. (6) and (7) (and an example is shown in Fig 4).   

 

 

Fig 4. Compensation of the interference angle by multiplying the inverse Fourier transform of the filtered 

hologram's spectrum with a digital reference wave. A spherical wavefront related to using a non-telecentric 

imaging system still distorts the reconstructed raw phase image. 

Next the curvature of the spherical wavefront introduced by the non-telecentric 

configuration [Eqs. (8) and (9)] can be estimated from the shape of the ±1 diffraction terms in 

the Fourier spectrum, see Fig 3. The right panel in Fig 4 shows the reconstructed phase image 

after compensating the interference angle in non-telecentric DHM systems. The partially 

compensated phase image shows a ring-like pattern superimposed over the sample's phase 

distribution (Figs 4 and 5a). This ring-like pattern is directly related to using a non-telecentric 

imaging system since the object distribution is distorted by a spherical phase factor, as Eqs. 

(3) and (4) show. 

 
Fig 5. Performance of the automated step to find the center (g and h) of the spherical wavefront by binarizing 

the reconstructed raw phase image. Panel (a) shows the reconstructed phase image after compensation by the 
linear phase related to the off-axis configuration. Panel (b) shows the binarized phase with the true center of the 

image (magenta) and the center of the spherical aberration (cyan). 

 

The spherical wavefront distorting the phase distribution, s(x,y), must be compensated to 

provide accurate phase measurements. One can generate a conjugated digital spherical 

wavefront knowing its curvature (Cx, Cy) and center (h, g) as 
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The curvature of the spherical wavefront along the x- and y- directions (e.g., Cx and Cy) 

are given by the size of the +1 term, as Eqs. (8) and (9). The center of the distorted spherical 

wavefront (h, g) can be estimated from the reconstructed phase map (right panel in Fig 5) by 

binarizing that image using Otsu's global thresholding. We have used the regionprops 

function with the lowest "Eccentricity" property to ensure that the bounding box completely 

encompasses an entire ring. Fig 5 shows an example of the estimation of the center of the 

spherical wavefront.  

Fig 6(a) shows the reconstructed 2D phase map of a star target from the Benchmark 

Technologies Quantitative Phase Target (QPT™). Panel (b) in Fig 6 shows the radial phase 

profile at two different radii: r = 43.95 μm (pink), and r = 73.25 μm (cyan). We have also 

plotted the nominal phase value, marked the gray-shaded area in Fig 6(b). The nominal phase 

values have been calculated based on the manufacturer’s specifications, a refractive index and 

thickness equal to 1.52 and 350 nm, respectively. There is a high similarity between the 

experimental phase values and the nominal ones, demonstrating the accuracy of the proposed 

method to compensate spherical phase distortions. The results illustrated in Fig 6 confirm 

that, within experimental errors, the spherical phase factor introduced by the non-telecentric 

configuration has been compensated, providing a linear shift-invariant quantitative phase 

imaging tool. 

 
Fig 6. (a) Reconstructed phase images of a star target from the Benchmark Technologies Quantitative Phase Target 

(QPT™). (b) Radial phase profiles at radii of r = 43.95 μm and r = 73.25 μm over the 2D phase map, shown as pink 

and cyan circles in panel (a), respectively. 

 

For further quantification of the proposed method, Fig 7 (a) and (c) show the 

reconstructed 2D phase images of a USAF target and wedding cakes. This second experiment 

aims to validate the performance of our method to reconstruct uniform background values, 

proving that the distorting spherical wavefront has been effectively removed. We have plotted 

some vertical and horizontal background phase profiles in Figs. 7 (b) and (d) measured at the 

colored lines over the phase images in Fig 7(a) and (c). The comparison of these background 

profiles in Figs. 7(b) and (d) confirms that the low frequency phase information is fairly 

uniform across the different directions Aside from minimal discrepancies from a complete flat 

background, these results demonstrate the effectiveness of our proposed method to 

compensate spherical distortions in all directions. Nonetheless, some profiles in these panels 

show the presence of a residual spherical wavefront. In particular, this residual spherical 

wavefront is clearly identified on the profiles of the wedding cakes (Fig. 7d).  



 

Fig 7. (a, c) Reconstructed 2D phase images of a USAF target and wedding cakes. (c,d) Vertical and horizontal phase 

profiles along the colored lines over the corresponding phase images. 

 

Although this residual spherical wavefront can be removed by manually adjusting M and 

N values, users must devote some time to reconstructing a fully compensated phase map of 

the sample without any linear or spherical aberrations. We understand that this manual 

compensation can be arduous for inexperienced users. Therefore, alternatively, we have 

included a final optional step to reconstruct phase distributions without phase aberrations 

based on minimizing a cost function. Two cost functions have been identified within the 

DHM community. The first one is based on the prior work of Trujillo et al in 2016, who 

demonstrate that the binary phase image from the best compensated phase map should be all 

white [17]. Based on this observation, in 2021, Castaneda et al. proposed a cost function (J1) 

that counts the total number of phase wraps in the binary reconstructed phase image [18]. 

Alternatively, other researchers have proposed an automatic phase aberration compensation 

method based on phase variation minimization [40,41]. In other words, the second cost 

function (J2) measures the reconstructed phase map's standard deviation (SD). Our 

preliminary comparison between both cost functions (not shown here) shows that the SD-

based cost function produces a more uniform distribution of the background phase values. 

Nonetheless, we have implemented both cost functions in the proposed computational 

approach to allow each user their use. 

Finally, we have compared the performance of the proposed method with the one 

provided by the subtraction method, which uses a blank hologram to compensate for the 

spherical aberrations caused by a non-telecentric alignment [21] via the direct subtraction 

between both reconstructed phase maps. Figure 8 shows the normalized reconstructed phase 

images of a USAF phase target for the proposed method (Fig. 8a) and the subtraction one 

(Fig. 8b), demonstrating the high agreement between both methods. The accuracy and 

resolution of both methods have been evaluated by plotting the normalized phase values 

along the vertical direction [indicated by the white arrows in Figs. 8(a) and (b)] of the 9 

group, see Fig. 8(c). From these profiles, one can identify the minimum resolvable element of 

the USAF phase target is the 9-3 element, which corresponds to 0.78 µm. This value confirms 

that both methods provide reconstructed images operating at the system’s coherent diffraction 

limit, d = λ/NA = 0.532 / 0.75 = 0.71 µm. Despite that the dual-shot subtraction method is 



simple to perform and computationally inexpensive, its effectiveness is highly dependent on 

the experimental conditions during data acquisition, requiring that the blank hologram must 

represent an exact replica of the spherical distortions to produce accurate phase distributions. 

If the experimental DHM system suffers from external factors such as vibrations and 

temperature fluctuations, the blank and sample holograms do not have the exact same 

distortion and the subtraction method will not produce accurate results, requiring the use of 

additional computational methods to reduce any residual distortion. This negative result is 

further exacerbated during the acquisition of large datasets, where the temporal and spatial 

changes are most likely to occur. However, the proposed method alleviates such constraints 

by taking advantage of the single shot nature of off-axis DHM 

 

Fig 8. Reconstructed phase images of a USAF phase target using the (a) proposed method and (b) subtraction 

method. (c) Phase profile along the vertical direction (marked by the color arrows in panels a and b) through the 
horizontal lines of group 9. 

 

Among the different minimization algorithms, we have implemented 7 different 

minimization algorithms to be used with either of the two cost functions in both the codes and 

GUIs. The minimization algorithms are: FMC, FMU, FSO, SA, PTS, GA, and PS. A short 

description of these algorithms is found in Section Appendix A. All these minimization 

algorithms are included in the Optimization and Global Optimization MATLAB toolboxes 

and the scipy library from Python. We have also implemented a hybrid optimization option 

combining the GA and PS methods. In the hybrid optimization approach, firstly, the GA 

algorithm runs, and after the GA method reaches convergence, a PS algorithm starts a fine-

tuning search for the best parameters. The combination of these two techniques was chosen as 

they individually performed well, and the hybrid GA+PS optimization yields the best results. 



Initial points on these minimization algorithms are the values found through the manual 

process of the spherical wavefront compensation. No equality or inequality constraints were 

enforced. The lower and upper bounds were defined with a ±50% range around the initial 

points for the curvature. Therefore, if the seeded value were 1, the algorithm is given the 

range from 0.5 to 1.5 to explore. The population size for the GA algorithm within the hybrid 

GA + PS algorithm was limited to 15; this value was found experimentally to improve 

convergence speed without sacrificing accuracy. All other values were left as the default since 

they were not found to significantly improve the speed or accuracy in the final reconstructed 

phase images. The comparison between the different minimization algorithms is Table B1 in 

Appendix B. Two metrics are used to evaluate the performance of these algorithms using the 

reconstructed phase images. These metrics are the Percent Error (PE), the Structured 

Similarity Index Measure (SSIM), and the average time. The processing time is reported 

based on a Windows-based i7-8700 K CPU (3.70 GHz) 16.0 Gbyte RAM desktop computer. 

The PE compares the estimated curvature of the spherical wavefront along the two lateral 

directions (Cx, and Cy) obtained after applying the minimization algorithm and the manual 

estimation of those parameters using an iterative looping. For example, if the estimated Cx 

value using the GA minimization algorithm is equal to 0.5769, and the manual estimation of 

Cx is 0.5707, the PE value is equal to 1.08% (e.g., PE = |(0.5769-0.5707)|/ 0.5707 × 100%). 

The SSIM metric compares the reconstructed phase image for each algorithm and the ground 

truth phase map obtained after the intensive iterative looping. For a complete statistical 

analysis, Table 1B reports the mean and the standard deviation values of the PE and SSIM 

metrics as well as the range of the PE metric within the tested experimental holograms. The 

results in Table 1B shows that the combination of the GA and PS minimization algorithms 

provides the highest similarity between the reconstructed phase images obtained after the 

minimization process and the ground truth phase image with an average SSIM value of 0.634 

and a standard deviation (std) of 0.37. On average, the hybrid GA+PS approach takes 

approximately a minute per image to find the Cx and Cy values and reconstruct phase images 

with minimum phase distortions. Although the fastest minimization algorithm is the FMU 

function with an average processing time of 2.96 seconds, the reconstructed phase images 

present significant phase distortions, leading to an almost null SSIM value. The PS algorithm 

is also quite fast, taking about 4 seconds on average to find the minimum values. Nonetheless, 

the similarity between the reconstructed phase images is slightly reduced from 0.634 with the 

GA+PS approach to 0.555 with the PS method.  

Fig 9 shows the performance of the hybrid GA + PS algorithm to compensate for the 

spherical wavefront. Panel (a) shows the reconstructed phase image with a residual spherical 

wavefront due to an improper estimation of the curvature of the spherical wavefront. Panel 

(b) provides the final reconstructed phase image after minimizing the SD-based cost function 

using the GA + PS minimization algorithm. One can realize that no spherical wavefront 

distorts the reconstructed phase map in Fig 9(b). In addition, the background of the phase 

distribution in Fig 9(b) is uniform, confirming the correct compensation of any linear and 

spherical aberration. To better visualize the background uniformity, we have unwrapped the 

reconstructed 2D phase image [Fig 9(c)] and show the three-dimensional pseudo color phase 

image in Fig 9(d). We have used the unwrapping method described in Ref. [42]. According to 

the color bar in Fig 9(d), the difference between the phase values in the background is 

negligible, confirming the success in computationally removing any residual term. Also, the 

phase values of the wedding cakes placed at different regions within the field of view are the 

same within experimental errors (see the cross-sectional profile in Fig. 9(e)), proving that the 

proposed method provides shift-invariant phase measurements.  

 



 

Fig 9. (a-b) Reconstructed phase images of wedding cakes before (a) and after (b) applying a minimization algorithm 

to computationally remove any distorting linear and spherical phase aberrations. (c) Unwrapped reconstructed phase 

image. (d) Three-dimensional pseudocolor image of the phase map shown in panel (c). (e) Cross-sectional profile 
view of phase along the pink direction in panel (c). 

 

Finally, we have tested the proposed computational approach’s performance by 

reconstructing a 2D phase image from red blood cells (RBCs). Fig 10 shows the reconstructed 

2D and 3D phase map of an RBC sample. Again, neither linear nor spherical aberrations are 

present in Fig 10, confirming the success of the proposed tool in compensating any phase 

term related to the off-axis non-telecentric DHM system. 



 

Fig 10. Reconstructed 2D (a) and 3D (b) phase image of an RBC sample using a non-telecentric DHM system. 

Conclusions 
In conclusion, this work comprehensively describes the reconstruction and phase 

compensation of holograms recorded using an off-axis DHM system operating in a non-

telecentric regime. This work offers a step-by-step process for implementing a computational 

method that compensates for both tilt and spherical aberrations using spectral analysis. This 

approach's source code is written in MATLAB 2021a and Python 3.7.1 and is publicly 

available via GitHub. To increase the applicability of the proposed method, we also provide 

some instructional videos on how to use our tool [42, 43]. Our implementation offers research 

and educational tools that benefit the DHM community. The most obvious of these benefits is 

the reconstruction of holograms by users with minimal knowledge of the system used to 

capture the images. Although the proposed computational approach has been validated with 

non-telecentric DHM imaging systems and reference plane waves, it can be used for any off-

axis DHM system in which a spherical wavefront distorts the complex object distribution in 

the recorded hologram. This distorting spherical wavefront can come from the object 

illumination, the reference illumination, the imaging system or all the above. Furthermore, 

this tool is ideal for creating labeled datasets that can be used to train machine learning or 

artificial intelligence algorithms for the same purpose. Finally, as an educational tool, this 

work offers an easy way for the next generation of researchers to understand how these 

spherical aberrations affect holograms and what steps are needed for their compensation. 

Future work should explore automated thresholding and segmentation procedures to 

automatically spatial filter the hologram spectrum and identify the parameters obtained 

through spectral analysis. This would allow for even less user intervention in getting accurate 

reconstructed phase images and hopefully improved reconstruction at higher speeds.  

Data availability. The raw codes written in MATLAB and Python, a MATLAB GUI, 

manual, and the non-telecentric holograms are publicly available on GitHub [37].  

Competing Interests. The authors declare no competing interests. 

 

Appendix A – Minimizing algorithms 

The minimization algorithms implemented in the proposed computational software are 

included in the Optimization and Global Optimization MATLAB toolboxes and the scipy, 

pyswarms, and parmoo libraries from Python. Below there is a short description of each 

minimization algorithm tested.  



Derivative-based non-linear solvers: 

1. FMC method finds the minimum of a constrained multivariable function. fmincon 

in MATLAB and NonlinearConstraint in Python’s scipy. 

2. FMU approach finds the minimum scalar value of a non-linear unconstrained 

multivariable objective function. fminunc in MATLAB, and fmin_ncg in Python’s 

scipy. 

3. FSO solver returns a vector that minimizes the objective function by solving for 

the function F(x) = 0. fsolve in MATLAB and fsolve in Python’s scipy. 

Non-derivative based solvers: 

4. SA is a simulated annealing probabilistic technique well suited for finding the 

global minimum of a large and discrete search space. Simmulan-nealbnd in 

MATLAB and dual_annealing in Python’s scipy. 

5. PTS algorithm that finds the points in a Pareto front that minimizes two cost 

functions of a two-dimensional variable. In this case, we use the J1 and J2 cost 

functions. paretosearch in MATLAB and basinhopping from Python’s scipy. 

6. GA algorithm minimizes a cost function given the number of variables in the 

function by iteratively picking the best population values within the range specified 

by the bounds. ga in MATLAB and differential_evolution in Python’s scipy. 

7. PS algorithm that does not utilize gradients, allowing for the convergence of cost 

functions that are not continuous or differentiable. patternsearch in MATLAB and 

minimize with Nelder-Mead method in Python’s scipy. 

Appendix B – Comparison between the different minimization algorithms 

Table B1. Comparison between the performance of each minimization function based on the average processing 

time, the Percentage Error (PE) of the curvature values (Cx, and Cy) and the Structured Similarity Index Measure 

(SSIM) between the reconstructed phase image for each algorithm and the ground truth phase map obtained after an 
intensive looping search.  

Metric FMC FMM FMU FSO GA PS PTS SA SGO GA+PS 

PE Cx 

(mean ± 

std) 

18.76 

±21.33 

29.31 

±20.54 

29.79 

±12.91 

323.94 

±393.91 

6.64 

±6.52 

6.90 

±8.34 

7.31 

±8.82 

7.00 

±10.43 

4.65 

±8.84 

5.58 

±7.08 

Range 

PE Cx  

0.58-

58.83 

9.86-

65.78 

10.73-

43.14 

10.78-

1034.40 

0.27-

17.93 

0.00-

18.16 

0.00-

19.20 

0.14-

28.11 

0.13-

19.22 

0.00- 

18.16 

PE Cy 

(mean ± 

std) 

45.41 

±56.30 

37.53 

±33.51 

55.69 

±40.64 

145.11 

±117.82 

9.93 

±2.27 

6.19 

±18.20 

8.64 

±11.59 

7.42 

±12.51 

3.09 

±11.81 

2.38 

±4.86 

Range 

PE Cy  

2.80-

167.04 

4.62-

97.51 

9.13-

120.00 

8.46-

307.89 

0.10-

6.45 

0.00-

49.71 

0.00-

31.85 

0.11-

31.07 

0.13-

31.86 

0.00- 

12.87 

SSIM 

(mean  

±std) 

0.061 

±0.06 

0.037 

±0.04 

0.016 

±0.02 

0.014 

±0.02 

0.461 

±0.35 

0.555 

±0.42 

0.559 

±0.42 

0.480 

±0.41 

0.530 

±0.41 

0.634 

±0.37 

Average 
Time 

(sec) 
2.74 3.68 2.96 0.49 41.66 3.90 166.93 35.75 10.92 64.03 
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